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1. OVERVIEW OF RESULTS

My mathematical interests lie in the field of Topological Data Analysis (TDA), an emerging approach for analyzing
data using geometric and topological tools. Broadly speaking, my research focuses on developing various theoretical
tools in TDA. In the avenues I have pursued so far, my contributions have been in the development of persistent
homology, sliding window embeddings in time series analysis, and coordinatizing data sets in topological spaces. In
these areas, I have used techniques from a multitude of mathematical disciplines ranging over topology, geometry,
algebra, functional analysis, and dynamical systems. This wide range is a reflection of my broader interests in the
context of TDA. Next, I give an overview of my results and in Section 5, I address future directions that my research
motivates.

The first area of my research is the theoretical development of persistent homology. I developed two per-
sistent Kiinneth formulae, that is, results relating persistent homology of two filtered spaces to persistent homology
of their products. The proofs use tools from homological algebra and are presented in a generalized setting, that is,
when the inclusion maps in filtered spaces are replaced by continuous maps between topological spaces. Leveraging
these formulae, I also developed novel methods for algorithmic and abstract computations of persistent homology.
For details, see section 2 below [9]. Although these theorems are contemporaneous with a few other recently de-
veloped Kiinneth formulae by Bubenik and Milicevic [3], Carlsson and Filippenko [4], and Polterovich et. al [17],
they differ in significant ways: while the theorems in [3, 17] are algebraic consequences of the classical theory, our
results are the first that originate at the level of filtrations, and while the Kiinneth formula in [4] holds for metric
spaces in low dimensions, our formulae hold for all homological dimensions.

The second area of my research is the theoretical development of sliding win-
dow embeddings. Historically, these embeddings have been used in the study of dy-
namical systems to reconstruct the topology of underlying attractors—under smooth-
ness conditions given by Takens [18]— from generic observation functions. In 2015,
Perea and Harer developed a framework for recurrence detection in time series data
using sliding window embeddings of periodic functions and persistent homology [15].

Since then, there have been advancements in both theory [11, 22, 24] and applica- -E ‘
tions [14, 22, 19, 21, 20]. In my research, I focus on sliding window embeddings of L? |
quasiperiodic functions, defined as a superposition of periodic functions with incom-

mensurate frequencies. Using approximations of quasiperiodic functions by truncated Fourier-like polynomials, I
proved foundational convergence theorems both at the level of sliding window embeddings and persistent homology.
Furthermore, I proved that these sliding window embeddings are dense in high dimensional tori. For details, see
Section 3 below (preprint [8]).

The third area of my research is studying coordinatization of data sets in topological spaces. Circular
coordinates on a data set were first introduced by de Silva, Morozov, and Vejdemo-Johansson [6] to aid non-linear
dimensionality reduction analysis. The algorithm identifies a significant integer persistent cohomology class on the
Rips filtration and solves a linear least squares optimization problem to construct a circled valued function on the
data set. Using similar ideas and principal Z-bundles, Perea constructed sparse circular coordinates by using a
landmark set in lieu of the entire data set [13]. These coordinates depend on the choice of landmarks. In my work,
we show that these coordinates are stable under some noise on the landmark set. We have preliminary stability
results for the geometric noise model: we start with two landmark sets in a bijective matching such that the paired
landmarks are close to each other. We are working to prove similar results for the Hausdorff noise model. For
details, see Section 4 below.

2. KUNNETH FORMULAE IN PERSISTENT HOMOLOGY

For a Principal Ideal Domain (PID) R and topological spaces X and Y, the classical Kiinneth formula given by the
split natural short exact sequence

(1) 0 = @ (H(X) ©r Hyi(Y)) = Ha(X x Y) = @ (Torg(Hi(X), Hu_i—1(Y))) = 0

relates the homology of the product space X x Y to the homology of spaces X and Y. In this project, we develop
Kiinneth formulae for persistent homology.
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What is persistent homology? It is an algebraic and computational tool [7, 25] used to quantify multiscale
features of shapes. The persistent homology algorithm takes a filtered space as the input and returns a barcode (a
collection of real intervals) or equivalently, a persistence diagram (points in the plane) as output.

For filtered topological spaces X and ), we consider two notions of product filtrations:

(X xV)g=Xqx Yy and Xeya= |J Xixy;

itj=d
These choices are motivated by different observations. The first choice of filtration, which we refer to as the
categorical product, is of interest for two reasons: (a) it is the product in the category of filtered topological spaces,
and (b) it is relevant in certain computational settings. More precisely, if (X, dx) is a metric space and R (X, dx) =
{0 C X :|o| < oo,diam(o) < €} is its Rips complex at parameter €, then R.(X XY, dxxy) = Re(X,dx) X Re(Y,dy)
[1]. Here dxxy is the maximum metric dxxy ((z, y), (2, y’)) = max{dx (z,z’),dy (y,y’)}, and the product of Rips
complexes is in the category of abstract simplicial complexes. The other choice of filtration, which we call the tensor
product, is relevant due to an algebraic resemblance between the short exact sequence it satisfies and the classical
equation 1. In Figure 1(a), we see an example of a topological circle X', while in Figure 1(b), we see two filtrations
of a 2-torus defined by our products.

In the following theorem, we state the two Kiinneth formulae in terms of their barcode representation:

Theorem 1 (Gakhar, Perea [9]). Let X and ) be pointwise finite filtrations. Then the barcodes of the categorical
product X x Y are given by the (disjoint) union of multisets

2) bed, (X x¥) = |J {rnv ’ I € bed;(X), J € bed; () }.
i+j=n

Similarly, the barcodes for the tensor product filtration X ® Y satisfy

bed, (X ®Y) = U {(€J+I)ﬂ(€1+J) ‘ I€bedi(X), Je dej(y)}

i+j=n

U {(pJJrI)ﬁ(erJ)‘ I €bcdi(X), J € bcdj(y)}

i+j=n—1

where £ and p; denote, respectively, the left and right endpoints of the interval J.

The first Kiinneth formula implies the following corollary for the Rips persistent homology (i.e. persistent homology
of Rips filtration) of product metric spaces:

Corollary 2 (Gakhar, Perea [9]). Let (X,dx),(Y,dy) be finite metric spaces and let bed~(X,dx) be the n-th
dimensional barcode of the Rips filtration R(X,dx) := {Re(X,dx)}e>0. Then,

bedR (X x Yidxxy) = | {m J ‘ I € bedR(X,dx), J € bedR(Y, dy)}
i+j=n

for all n € N, where dx «y s the mazimum metric.

The above formulae also hold true when the inclusions X; < X, 1 and Y; — Y;;1 are replaced by continuous maps.
The categorical product of R-indexed diagrams is just the R-indexed diagram defined using index-wise products.
The generalized tensor product ®g of N-indexed diagrams —equivalent to ® for inclusions— is defined as follows:
the space (X ®g¢ V), is the homotopy colimit of the functor from the poset Ay = {(i,j) € N? : i + j < k} to Top
sending (4, j) to X; x Y;, and (i <+i',j < j') to the map X; x Y; = X;» x Y}, induced by composite maps X; — X
and Y; — Y. The map (X ®g V)i — (X Qg V)k+1 is the one induced at the level of homotopy colimits by the
inclusion A C Agyq.

Applications. We present two applications of Corollary 2. For the first, we theoretically compute the barcodes of
the Rips complexes of an n-torus T = S}l X e X S,l,n, where S} denotes a circle of radius r. They can be computed
from a theorem of Adamaszek and Adams on Rips complexes of a circle [1], and the observation that

R(T) = R(S}.,) x -+ x R(S;)
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(a) A fitlered simplicial circle X (b) The product filtrations X x X (left) and X ® X (right).

FIGURE 1. The numbers next to simplex indicate when that corresponding simplex appeared in the filtration.

where T is equipped with the maximum metric. While we only provide the following low dimensional barcodes of
R(T) explicitly

bed; (R(T)) = {[0,V3r,] [n=1,...,N}

bedy (R(T)) = { [0, V3 min{r,, r}]

n,mzl,...,N},
corollary 2 works for all homological dimensions.

The second application arises in time series analysis of quasiperiodic functions, which I define in the next section.
The idea is that the sliding window embedding SW of a quasiperiodic function approximates a torus and Rips
persistent homology can detect its homological features. Computing the accurate barcodes of this embeddings is
prohibitively expensive, so the standard strategy is to compute Rips persistent homology on a finite set of landmarks
L C SW chosen from the embeddings. We present an alternate strategy leveraging the Kiinneth formula in Corollary
2 that allows us to find approximations to Rips barcodes of SW. Our strategy does better than the standard one
both in terms of computational efficiency and approximation. Figure 2 shows comparisons between the standard
method and the alternate method using the Kiinneth formula.
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FIGURE 2. (Left) Confidence regions for approximations via the landmark strategy (blue square)
and Kiinneth strategy (red rectangles) show that the Kiinneth strategy provides better approxi-
mations; in particular, the red regions have smaller area and are far from the diagonal. (Right)
Computational times for the landmark and Kiinneth approximations to bcd(SW), i < 2.

3. SLIDING WINDOW EMBEDDINGS OF QUASIPERIODIC FUNCTIONS

The sliding window embedding of a function f : R — C for dimension d and time delay 7 > 0, at time ¢ is defined
as SWy . f(t) = [f(t) flt+7) ... [+ dT)]/. This definition was motivated by Takens’ embedding theorem
[18]. In [15], Perea and Harer developed a framework to quantify periodicity using persistent homology of sliding

window embeddings. They showed that for a periodic function f, its sliding window embedding SW - f(R) is
homeomorphic to a circle.



A finite set of real numbers is called incommensurate if it is linearly independent over Q. If the set of harmonics
controlling a function is incommensurate, we call the function a quasiperiodic function. A special case of such
functions was studied in [11]. In particular, it was proved that for a function f which is a sum of periodic functions
with incommensurate frequencies, its sliding window embedding SWy - f(R) is dense in a high dimensional torus,
with its dimension equaling the number of frequencies.
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FIGURE 3. Example: We show the time series plot of quasiperiodic f(t) = sint 4 sin+/3t along
with sliding window for 7 = 14.952,d = 3 in 3(a), the sliding window point cloud for f in 3(b), and
the persistent homology of Rips filtration on the sliding window point cloud in 3(c).

In my work, I use techniques from [11, 15] to study general quasiperiodic functions. We define f : R — C to be
quasiperiodic with a given set of frequencies {wi,...,wy} if there is a function F' : RN — C—called the parent
function—such that F is periodic in the n-th variable with period i—:, f agrees with the restriction of F' to the
diagonal, and N is minimal. Under certain regularity assumptions on the parent function and with tools from
multivariate harmonic analysis, we can write a Fourier-like series that converges everywhere to F' and its restriction
to the diagonal gives a series for the quasiperiodic f:

f(t) = F(t, ce ,t) = Z F(k)ebt<k,w>

keZN
H 27 27 2w
. w; _ 2 “N _
F(k) 1 ’ L’Wltl/ / F(ty,... ty)e RNONIN Gy dty,
0 0
where w is the frequency vector (wl, ...,wn). As in single variable Fourier analysis, we can use a truncation

parameter Z € N to approximate f by the partial sum polynomials Sz f. We have proved two main results so far.

The first theorem gives us a series of bounds —for different levels of regularity of f— on the proximity of slid-
ing window embeddings of f to its truncated polynomial Sz f. Moreover, the more regular f is, the faster the
convergence of sliding window embeddings will be. Indeed, we have the following theorem:

Theorem 1 (Gakhar, Perea [8]). Let r € N\ {1}. If f € C"(R,C), then for allt € R

(X 1Rz (0, F)| )
Zr—1

1/2

| SWa,r f(t) = SWa,r Sz f(t) [[gar: < C

where

N (Area(SN-1)YP
C— VN ( rea( )) VaT

/
a2 =2 (ITY o]
depends of the w, N, and r. Furthermore, for a bounded T C R, let X = SWy,f(T) andY = SWy .Sz f(T). Then
. 1/2
(X, [[1Rz(0,F)IIP)

Zr—1
where dp 1is the bottleneck distance on the space of persistence diagrams, defined as:

dp(dgm(X),dgm(Y)) < 2C

dp (dgmy,dgm,) = inf sup [z — pu(@)[]oc,

redgm,

where the infimum is over all bijections u : dgm; — dgm,.



The second theorem describes the structure of SWy Sz f. Under appropriate conditions on d, 7, and Z, the sliding
window embedding SW, .Sz f is homeomorphic to TV wrapped around T¢*!. The geometry of this wrapping
depends on the collection of integer N-tuples k’s with non-zero coefficients 3 (k). Indeed, we have the following
theorem:

Theorem 2 (Gakhar, Perea [8]). Given a large enough Z, the sliding window embedding {SW4.Szf(l) |l € Z} is
dense in a space homeomorphic to TV in T4t if d = (2Z + 1)N — 1 and if T satisfies that for all pairs k,1 € {k €
ZN || k ||oo< Z}, the inner product T(k — 1,w) is not an integer multiple of 2.

In Figure 4, we show a flat representation of a 2-torus around a 3-torus.
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FIGURE 4. A homeomorphic representation of
SWa.+g(t) for g(t) = sin t+sin /3t +sin(v/341)t.
The unit cube represents the flat 3-torus, while
the green surface represents the 2-torus. The
edges are colored in yellow, red, and blue and
the edges of same color are identified. The color
Yellow . .. .
0.2+ labels are provided for color vision deficient read-
ers.
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4. STABILITY OF CIRCULAR COORDINATES

In [6], de Silva, Morozov, and Vejdemo-Johansson developed a strategy for non-linear dimensionality reduction.
Such reduction schemes address the problem of representing high dimensional data in terms of low dimensional
coordinates. The authors used persistent cohomology to construct circular coordinates on a data set X. The
algorithm identifies a significant integer persistent cohomology class on the Rips filtration and solves a linear least
squares optimization problem to construct a circle valued function on the data set. In [13], Perea used the theory of
principal Z-bundles to construct sparse circular coordinates by considering Rips filtration on a landmark set L C X.
The coordinates are defined on an open neighbourhood of L such that it covers X. The algorithm is as follows:

(1) A set of landmarks L C X is selected at random or via maxmin sampling.
(2) The 1-dimensional Rips persistent cohomology is computed for L with coefficients in Z,, prime ¢ > 2.
(3) A cocycle representative i’ € Z1(Ran(L);Z,) for a high persistence class corresponding to (a,b) € dgm(L)
is selected for some max{a, dy (L, X)} < o < &.
(4) 7' is lifted to an integer cocycle 1 : Z1(Ran(L); Z).
(5) Using the inclusion Z < R, the Moore-Penrose pseudoinverse for the coboundary map
d2a 1 C°(Raa(L);R) = C°(Rsa(L);R),

and a partition of unity ¢, the coordinates are defined on neighborhoods of landmark points.

Using similar techniques, coordinates in projective spaces [12] and lens spaces [16] were constructed.

In my work, I am interested in stability of circular coordinates with respect to geometric and Hausdorff noise. We
have proved that the coordinates are stable under geometric noise on the landmark set L. More explicitly, let L
and L’ be two landmark sets with the same cardinality. If there exists a matching L — L’ such that the paired
elements are within §/2-distance of each other, then the two induced circle valued functions are close to each other
in L* metric. Indeed, we have the following theorem:

Theorem 1 (Gakhar, Mike, Perea, Polanco). Let L,L' C X be two landmark sets with the same cardinality N.
Assume there is a bijection p : L' — L such that ¥i, d(¢}, ;1(€;)) < 0/2, then the two induced circle valued functions
h,h' satisfy

27 || 0t [lats Wats —wWh oo [(N — )mtd(wats
) < 27 ||+<|| N loo [N = Dmtd(wass) oy

ming (We+4) amc(w’) 2ming (wWa+s)



where

(a) for the lifted integer cocycle n € C*(Rays(L);R), 0 =10 — days o d s(n),
(b) wo : L x L = [0,00) and w!, : L’ x L' — [0,00) are families of symmetric weight functions such that they

are momnotonically increasing in a,
(c) |- 12,5=> (7%(0))2 Wa+ts(0) where the sum is over all 1-simplices o of the full simplex on L,
(d) miny (wats) := min{we+45(0) : 0 € Rass(L)},
(e) mtd(wais) :=max > wass(j, k),

JEL kel
(f) amc(wl,) == min 3 el ang
o) = R &g TOLT=ISD

(9) ¢,¢" are partition of unities.

5. CURRENT AND FUTURE WORK

In this section, I describe my current work and the future directions motivated by my research.

Persistent homology. There are a number of questions that are motivated by my research in Section 2. The
first question I plan to investigate is whether the two products are homologically stable. Although, I have proved
preliminary bounds in bottleneck distance (defined in Section 3, Theorem 1) on persistent homology of the products
in terms of interleavings of persistent homology of factor filtrations, it remains to be seen whether these bounds are
sharp. In [9], only the categorical product has been observed to be computationally relevant. An important area
of research is to find scenarios where the Kiinneth formula for the tensor product can be applied, for instance by
considering examples where CW-complexes fit in a natural manner. Another important direction is to develop a
Kiinneth formula for multiparameter persistent homology [5], that is, persistent homology of a filtration controlled
by two or more parameters. I have preliminary theorems for the categorical product of multifiltrations and I plan
to investigate it more.

Sliding window embeddings and quasiperiodicity. There are a few questions motivated by my work in Section
3. Currently, I am working on two aspects. The first is an investigation of results related to persistent homology of
SWa Sz f. What makes this problem hard is that the Rips persistent homology depends on the actual distances
between the data points, which in this case lie on a twisted torus, like in Figure 4. The other is development
of an algorithm to optimally choose the parameters 7 and d when starting with a time series. Recall that these
parameters dictate the geometry of the torus and by optimal choice, I mean that this geometry is close to that of a
standard n-torus, where n is the set of linearly independent harmonics. For future research, there are two avenues
here that I plan to explore. I plan to investigate how the sliding window point cloud SWy Sz f(T') approximates
the underlying torus as T' C Z grows larger. This approximation process depends on the continuous fractions of
the frequencies and a multidimensional version of the 3-gap theorem will be useful [2]. The other avenue entails
applying the theory to natural scenarios where quasiperodicity is observed. Quasiperiodicity occurs naturally in
biphonation phenomena in mammals [23], as well as in the transition to chaos in rotating fluids [10].

Coordinatizing data sets. My research in section 4 motivates a number of questions. Currently, I am working
on stability with a generalization of the geometric noise model, namely the Hausdorff noise model. In this model,
the cardinality condition on the landmark sets is relaxed. We want to show that for landmark sets with a small
Hausdorff distance, their induced circle valued functions are close to each other in L> metric. For future research,
there are two directions that I plan to explore. First, I would like to use these tools to study stability of coordinate
functions in Lens spaces under similar conditions; such coordinates were defined in [16]. The second question is in
physics: the goal of Thomson problem is to determine potential energy minimizing configurations of N electrons
constrained to a unit sphere S2. These configurations have been identified for only a few values of N. I plan to use
connections between configuration spaces, Eilbenberg-Maclane spaces, and coordinatization in lens spaces to solve
for such configurations.
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